DEL LABORATORIO AL PLATO: LA CIENCIA DETRÁS DE LA HIDROPONÍA
Resumen
Texto completo:
PDFReferencias
Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A., & Shabala, S. (2021). Perlite particle size and NO3-/NH4+ ratio affect growth and chemical composition of purple coneflower (Echinacea purpurea L.) in hydroponics. Industrial Crops and Products, 162, 113285. https://doi.org/10.1016/j.indcrop.2021.113285
Alipio, M. I., Dela Cruz, A. E. M., Doria, J. D. A., & Fruto, R. M. S. (2019). On the design of Nutrient Film Technique hydroponics farm for smart agriculture. Engineering in Agriculture, Environment and Food, 12(3), 315–324. https://doi.org/10.1016/j.eaef.2019.02.008
Amoozgar, A., Mohammadi, A., Sabzalian, M.R. (2017). Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55(1): 85-95. https://doi.10.1007/s11099-016-0216-8
Arcasi, A., Mauro, A.W., Napoli, G., Tariello, F., Vanoli, G.P. (2024). Energy and cost analysis for a crop production in a vertical farm. Applied Thermal Engineering, 239, 122129. https://doi.org/10.1016/j.applthermaleng.2023.122129
Aslanidou, M., Elvanidi, A., Mourantian, A., Levizou, E., Mente, E., Katsoulas, E. (2023). Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae, 9(10), 1077. https://doi.org/10.3390/horticulturae9101077
Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., Wohlleb, G., Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6), 6879-6891. http://doi.10.3390/ijerph120606879
Bosman, R. C., van Rooyen, I. L., Brancken, J., Brink, H. G., & Nicol, W. (2024). Simultaneous pH and EC control in hydroponics through real-time manipulation of the ammonium-to-nitrate ratio in the nutrient solution. Scientia Horticulturae, 332, 113185. https://doi.org/10.1016/j.scienta.2024.113185
Campobenedetto, C., Agliassa, C., Mannino, G., Vigliante, I., Contartese, V., Secchi, F., Bertea, C. M. (2021). A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture, 11(6), 557. https://doi.org/10.3390/agriculture11060557
Carrasco-Gil, S., Allende-Montalbán, R., Hernández-Apaolaza, L., Lucena, J. J. (2021). Application of seaweed organic components increases tolerance to Fe deficiency in tomato plants. Agronomy, 11(3), 507. https://doi.org/10.3390/agronomy11030507
Cheng, P., Zhu, G., Kim, H.J., Brown, P.B., Huang, J.H. (2020). Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. Journal of Cleaner Production, 275, 122888. https://doi.org/10.1016/j.jclepro.2020.122888.
de Nijs, E. A., Bol, R., Zuurbier, R., & Tietema, A. (2024). From waste to fertilizer: The impact of rose-waste compost on commercial cut rose cultivation in Kenya. Cleaner Waste Systems, 10, 100208. https://doi.org/10.1016/j.clwas.2025.100208
Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E. N., Sianipar, A. B., Hibrizi, D. R., Azhar, M. S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. https://doi.org/10.1016/j.esd.2025.101683
DSouza, G. C., Dodangeh, F., Venkata, G. B., Ray, M. B., Prakash, A., & Xu, C. (2025). A comprehensive review of biobased polyurethane and phenol formaldehyde hydrophilic foams for environmental remediation, floral, and hydroponics applications. Biomass and Bioenergy, 192, 107493. https://doi.org/10.1016/j.biombioe.2024.107493
Du, M., Xiao, Z., & Luo, Y. (2022). Advances and emerging trends in cultivation substrates for growing sprouts and microgreens toward safe and sustainable agriculture. Current Opinion in Food Science, 46, 100863. https://doi.org/10.1016/j.cofs.2022.100863
Erekath, S., Seidlitz, H., Schreiner, M., & Dreyer, C. (2024). Food for future: Exploring cutting-edge technology and practices in vertical farm. Sustainable Cities and Society, 106, 105357. https://doi.org/10.1016/j.scs.2024.105357
Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas R., Krishnapillai, M., Galagedara, L. (2003). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104, 88-102. https://doi.org/10.1139/cjps-2023-0034
Fernandes, P., Batalha, L., Santos, T., Cardoso, P. (2024). Evaluation of hydroponic systems for organic lettuce production in controlled environment. Frontiers in Plant Science, 15, 1401089. https://doi.10.3389/fpls.2024.1401089
González-Carrasco, E., Ruiz, L., Barrios, P. (2022). Deep-learning-based detection of Tuta absoluta larvae in hydroponic tomato using RGB imagery. Computers and Electronics in Agriculture, 199, 107138. https://doi.10.1016/j.compag.2022.107138
Graamans, L., Visser, P., Kuhn, E., van den Dobbelsteen, A. (2021). Environmental impacts of vertical farming: Life cycle assessment and energy analysis of a pilot-scale facility. Journal of Cleaner Production, 310, 127507. https://doi.org/10.1016/j.jclepro.2021.127507
Green Moon Project. A team. A project. A reality. Consultado en abril 2025. https://www.greenmoonproject.com/
Jiang, Y., Tan, Y., Ji, F., Su, D., Wang, S., Zhang, L., Zhou, Q. (2024). CFIHL: a variety of chlorophyll-a fluorescence transient image datasets of hydroponic lettuce. Frontiers in Plant Science, 15, 1414324. https://doi.org/10.3389/fpls.2024.1414324
Junge, R., Schmautz, Z., & Milliken, S. (2025). Toward nutrient cycling from organic waste streams for soilless cultivation. Current Opinion in Food Science, 61, 101257. https://doi.org/10.1016/j.cofs.2024.101257
Kannan, M., Elavarasan, G., Balamurugan, A., Dhanusiya, B., & Freedon, D. (2022). Hydroponic farming – A state of art for the future agriculture. Materials Today: Proceedings, 68, 2163–2166. https://doi.org/10.1016/j.matpr.2022.08.416
Kumar, R. R., Cho, J. Y. (2014). Reuse of hydroponic waste solution. Environmental Science and Pollution Research 21(16): 9569-9577. https://doi.10.1007/s11356-014-3024-3.
Lara-Perez, S., Basilio-Ferro, R., Correa, B., Casarin, R., Quatrini-Correa, T., Blanco, K., Bagnato, V. (2024). Enhanced vegetable production in hydroponic systems using decontamination of closed circulating fluid. Scientific Reports, 14, 602. https://doi.10.1038/s41598-023-50974-9
Li, T., Wang, X., Zhu, Z., Gaju, O., Shi, Y., & Chang, Y. (2025). Effect of coconut waste and its biochar as hydroponics substrates on system performance and nitrogen transformation in aquaponics. Aquacultural Engineering, 109, 102512. https://doi.org/10.1016/j.aquaeng.2025.102512
Luo, S.P., Zou, J., Shi, M., Lin, S., Wang, D., Liu, W., Shen, Y., Ding, X., Jiang, Y. (2024). Effects of red–blue light spectrum on growth, yield, and photosynthetic efficiency of lettuce in a uniformly illumination environment. Plant, Soil and Environment 70: 305-316. https://doi.10.17221/480/2023-PSE
Maatjie, M. A., Maboko, M. M., Modise, D. M. (2018). Yield of hydroponically grown tomato (Solanum lycopersicum) as affected by different particle sizes of sawdust. South African Journal of Plant and Soil 35(5), 385-387. https://doi.10.1080/02571862.2018.1424357
Maity, T., & Saxena, A. (2024). Challenges and innovations in food and water availability for a sustainable Mars colonization. Life Sciences in Space Research, 42, 27–36. https://doi.org/10.1016/j.lssr.2024.03.008
Mamatha, V., & Kavitha, J. C. (2023). Machine learning based crop growth management in greenhouse environment using hydroponics farming techniques. Measurement: Sensors, 25, 100665. https://doi.org/10.1016/j.measen.2023.100665
Martin M., Bustamante, M.J., Zauli, I., Orsini, F. (2024) Environmental life cycle assessment of an on-site modular cabinet vertical farm. Frontiers in Sustainable Food Systems, 8:1403580. https://doi.org/10.3389/fsufs.2024.1403580
Martin, M., Soy, A.S., Carotti, L., Orsini, F. (2024b). Environmental life cycle assessment of lettuce production in a container-based vertical farm. European Journal of Horticultural Science, 89(5). https://doi.org/10.17660/eJHS.2024/021
Massa, D., Magán, J. J., Montesano, F. F., & Tzortzakis, N. (2020). Minimizing water and nutrient losses from soilless cropping in southern Europe. Agricultural Water Management, 241, 106395. https://doi.org/10.1016/j.agwat.2020.106395
Maucieri, C., Nicoletto, C., Junge, R., Schmautz, Z., Sambo, P., & Borin, M. (2018). Hydroponic systems and water management in aquaponics: A review. Italian Journal of Agronomy, 13(1), 1–11. https://doi.org/10.4081/ija.2017.1012
Medina-García, A., Otazu, V., Caballero, B. (2021). Performance of basil and potato minitubers under aeroponic and NFT systems in a controlled environment. Frontiers in Sustainable Food Systems, 5, 734589. https://doi.10.3389/fsufs.2021.734589
Morella, P. Lambán, M. P., Royo, J., Sánchez, J. C. (2023). Vertical Farming Monitoring: How Does It Work and How Much Does It Cost? Sensors, 23(7), 3502. https://doi.org/10.3390/s23073502
NASA SPINOFF. NASA Technology Transfer Program. Consultado en abril 2025. https://spinoff.nasa.gov/indoor-farming
Pal, P., & Anantharaman, H. (2022). CO2 nanobubbles utility for enhanced plant growth and productivity: Recent advances in agriculture. Journal of CO2 Utilization, 61, 102008. https://doi.org/10.1016/j.jcou.2022.102008
Pandey, P., Veazie, P., Whipker, B., Young, S. (2023). Predicting foliar nutrient concentrations and nutrient deficiencies of hydroponic lettuce using hyperspectral imaging. Biosystems Engineering, 230, 258-269. https://doi.org/10.1016/j.biosystemseng.2023.05.005
Pantanella, E., Cardarelli, M., Colla, G., Rea, E., Marcucci, A. (2012). Aquaponics vs. hydroponics: Production and quality of lettuce crop. Acta Horticulturae, 927, 887-893. https://doi.org/10.17660/ActaHortic.2012.927.109
Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G., Vasiliadis, L. (2023). A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690
Rajaseger, G., Chan, KL., Yee-Tan, K., Ramasamy, S., Khin, MC., Amaladoss, A., Kadamb-Haribhai P. (2023). Hydroponics: current trends in sustainable crop production. Bioinformation, 30, 19(9). https://doi.org/10.6026/97320630019925
Rajendran, S., Domalachenpa, T., Arora, H., Li, P., Sharma, A., & Rajauria, G. (2024). Hydroponics: Exploring innovative sustainable technologies and applications across crop production, with Emphasis on potato mini-tuber cultivation. Heliyon, 10(5), e26823. https://doi.org/10.1016/j.heliyon.2024.e26823
Ravani, M., Chatzigeorgiou, I., Monokrousos, N., Giantsis, I., Ntinas, G., (2024). Life cycle assessment of a high-tech vertical decoupled aquaponic system for sustainable greenhouse production. Frontiers in Sustainability, 5, 1422200. https://doi.org/10.3389/frsus.2024.1422200
Reyes Yanes, A., Abbasi, R., Martínez, P., Ahmad, R. (2022). Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems. Sensors, 22(19), 7393. https://doi.org/10.3390/s22197393
Ronga, D., Biazzi, E., Parati, K., Caradonia, F., Setti, L., Colla, G., Rouphael, Y. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192
Rouphael, Y., Colla, G., Bernardo, L., Kane, D., Cardarelli, M., Lucini, L. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and stress tolerance. Frontiers in Plant Science, 8: 2202. https://doi.org/10.3389/fpls.2017.02202
Ryu, J. H., Baek, J., & Subah, Z. (2025). A low-cost autonomous and scalable hydroponics system for space farming. HardwareX, 21, e00625. https://doi.org/10.1016/j.ohx.2025.e00625
Sadek, N., kamal, N., & Shehata, D. (2024). Internet of Things based smart automated indoor hydroponics and aeroponics greenhouse in Egypt. Ain Shams Engineering Journal, 15(2), 102341. https://doi.org/10.1016/j.asej.2023.102341
Savvas, D., Gruda, N. (2018). Application of soilless culture technologies in greenhouse horticulture—A review. European Journal of Horticultural Science 83(5): 280-293. https://doi.10.17660/eJHS.2018/83.5.2
Schmidt Rivera, X., Rodgers, B., Odanye, T., Jalil-Vega, F., & Farmer, J. (2023). The role of aeroponic container farms in sustainable food systems – The environmental credentials. Science of The Total Environment, 860, 160420. https://doi.org/10.1016/j.scitotenv.2022.160420
Sharma, A., Hazarika, M., Heisnam, P., Pandey, H., Devadas, V. S., & Wangsu, M. (2024). Controlled Environment Ecosystem: A plant growth system to combat climate change through soilless culture. Crop Design, 3(1), 100044. https://doi.org/10.1016/j.cropd.2023.100044
Sonneveld, C., Voogt, W. (2009). Plant Nutrition of Greenhouse Crops. Springer.
Stanghellini, C., Katzin, C. (2024). The dark side of lighting: A critical analysis of vertical farms' environmental impact. Journal of Cleaner Production, 458, 142359. https://doi.org/10.1016/j.jclepro.2024.142359
Udovichenko, A., Fleck, B. A., Weis, T., & Zhong, L. (2021). Framework for design and optimization of a retrofitted light industrial space with a renewable energy-assisted hydroponics facility in a rural northern canadian community. Journal of Building Engineering, 37, 102160. https://doi.org/10.1016/j.jobe.2021.102160
Villagrán, E., Romero-Perdomo, F., Numa-Vergel, S., Galindo-Pacheco, J. R., & Salinas-Velandia, D. A. (2024). Life Cycle Assessment in Protected Agriculture: Where Are We Now, and Where Should We Go Next? Horticulturae, 10(1), 15. https://doi.org/10.3390/horticulturae10010015
Vollmer, A., Schmidt, U., Ulrichs, C., & Dannehl, D. (2025). Closing the loop: Utilization of composted tomato plant residues as fertilizer and soil amendment. Scientia Horticulturae, 342, 114028. https://doi.org/10.1016/j.scienta.2025.114028
Wang, S., Meng, X., Tang, Z., Wu. Y., Xiao, X., Zhang G., Hu L., Liu, Z., Lyu, J., Yu, J. (2022). Red and Blue LED Light Supplementation in the Morning Pre-activates the Photosynthetic System of Tomato (Solanum lycopersicum L.) Leaves and Promotes Plant Growth. Agronomy, 12(4): 897. https://doi.10.3390/agronomy12040897
Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290
Zabel, P., Zeidler, C., Vrakking, V., Dorn, M., Schubert, D. (2020). Biomass Production of the EDEN ISS Space Greenhouse in Antarctica During the 2018 Experiment Phase. Frontiers in Plant Science, 11, 656. https://doi.org/10.3389/fpls.2020.00656
Zhu, Z., Yogev, U., Goddek, S., Yang, F., Keesman, K. J., & Gross, A. (2022). Carbon dynamics and energy recovery in a novel near-zero waste aquaponics system with onsite anaerobic treatment. Science of The Total Environment, 833, 155245. https://doi.org/10.1016/j.scitotenv.2022.155245
Enlaces refback
- No hay ningún enlace refback.
Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.
.
Naturaleza y Tecnología