EVALUACIÓN DE MOLÉCULAS DE ORIGEN NATURAL COMO TRATAMIENTO ALTERNATIVO CONTRA PATÓGENOS FÁRMACO-RESISTENTES

Goretti González Gómez, Juan Pablo Armando Rodríguez Ramírez, Daniela Calvillo Zacarías, David Martínez Jiménez, Priscila Ramírez Loya, Francisco Javier Rangel Mata, Mayra Cecilia Rodríguez Solís, Luis Rafael Cardoso Reyes, Juana López Godínez, Patricia Nayeli Alva Murillo

Resumen


La resistencia a los antimicrobianos es una crisis sanitaria global que se presenta en la medicina humana y veterinaria. Al haber pocos medicamentos para combatir a los microorganismos patógenos, las infecciones son más difíciles de tratar, aumentando el riesgo de su propagación y de más muertes. Lo anterior, impulsa la búsqueda de alternativas terapéuticas, principalmente compuestos de origen natural, tales como la nisina y el octanoato de sodio. Ambos son compuestos generalmente reconocidos como seguros por la Administración de Alimentos y Medicamentos de EUA. Un patógeno de interés pecuario es la bacteria Staphylococcusaureus, causante de la mastitis bovina, con resistencia a antibióticos convencionales y capacidad de formar biopelículasreportadas. Este estudio evaluó el efecto antimicrobiano de la nisina y octanoato de sodio, solos y mezclados, sobre la biopelícula producida por cuatro aislados de S. aureus. La concentración mínima inhibitoria (CMI) y bactericida (CMB) de la nisina no varío entre los aislados, siendo de 500 y >1,000 µg/mL, respectivamente. La CMI y CMB de octanoato contra los aislados fue de 8.3 y 16.6 mg/mL, respectivamente. Además, este ácido graso interfirió en la biopelícula de S. aureus preformada. Se concluye que el octanoato es un agente prometedor, pero se requieren más estudios para optimizar su uso en aplicaciones clínicas y veterinarias frente a patógenos multirresistentes.

Texto completo:

PDF

Referencias


​​Alva-Murillo, N., Ochoa-Zarzosa, A., & López-Meza, J. E. (2017). Sodium octanoate modulates the innate immune response of bovine mammary epithelial cells through the TLR2/P38/JNK/ERK1/2 pathway: Implications during Staphylococcus aureus internalization. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/fcimb.2017.00078

​Campos, B., Pickering, A. C., Rocha, L. S., Aguilar, A. P., Fabres-Klein, M. H., de Oliveira Mendes, T. A., Fitzgerald, J. R., & de Oliveira Barros Ribon, A. (2022). Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. En BMC Veterinary Research (Vol. 18, Número 1). https://doi.org/10.1186/s12917-022-03197-5

​Ceotto-Vigoder, H., Marques, S. L. S., Santos, I. N. S., Alves, M. D. B., Barrias, E. S., Potter, A., Alviano, D. S., & Bastos, M. C. F. (2016). Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. Journal of Applied Microbiology, 121(1). https://doi.org/10.1111/jam.13136

​Demontier, E., Ster, C., Chamberland, S., Ramanathan, S., Dufour, S., & Malouin, F. (2024). Biofilm dairy foods review: Effect of biofilm production on antimicrobial susceptibility of Staphylococcus aureus bovine mastitis strains from the most prevalent Canadian spa types. Journal of Dairy Science. https://doi.org/10.3168/jds.2024-25238

​Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. En Applied Microbiology and Biotechnology (Vol. 85, Número 6, pp. 1629–1642). https://doi.org/10.1007/s00253-009-2355-3

​Ghapanvari, P., Taheri, M., Jalilian, F. A., Dehbashi, S., Dezfuli, A. A. Z., & Arabestani, M. R. (2022). The effect of nisin on the biofilm production, antimicrobial susceptibility and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. European Journal of Medical Research, 27(1). https://doi.org/10.1186/s40001-022-00804-x

​Jozala, A. F., Novaes, L. C. de L., & Pessoa, A. (2015). Nisin. En Concepts, Compounds and the Alternatives of Antibacterials. InTech. https://doi.org/10.5772/60932

​Karau, M. J., Koscianski, C. A., Badley, A. D., Bedard, N. A., Zinckgraf, J. W., & Patel, R. (2025). In vitro activity of nisin A against Staphylococci isolated from periprosthetic joint infection. Antibiotics, 14(5). https://doi.org/10.3390/antibiotics14050515

​Khoramian, B., Jabalameli, F., Niasari-Naslaji, A., Taherikalani, M., & Emaneini, M. (2015). Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microbial Pathogenesis, 88. https://doi.org/10.1016/j.micpath.2015.08.007

​Lee, J. H., Kim, Y. G., Khadke, S. K., & Lee, J. (2021). Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microbial Biotechnology, 14(4). https://doi.org/10.1111/1751-7915.13710

​Lin, W. C., Hsu, K. C., You, M. F., Lee, K. H., Chi, C. H., & Chen, J. Y. (2023). Octanoic acid promotes clearance of antibiotic-tolerant cells and eradicates biofilms of Staphylococcus aureus isolated from recurrent bovine mastitis. Biofilm, 6. https://doi.org/10.1016/j.bioflm.2023.100149

​Nair, M. K. M., Joy, J., Vasudevan, P., Hinckley, L., Hoagland, T. A., & Venkitanarayanan, K. S. (2005). Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. Journal of Dairy Science, 88(10). https://doi.org/10.3168/jds.S0022-0302(05)73033-2

​Navarro-Acosta, F. A. (2023). La mezcla de nisina y octanoato como alternativa potencial contra la formación de biopelículas de Staphylococcus aureus: implicaciones en la mastitis bovina [Tesis de Licenciatura]. Universidad de Guanajuato.

​Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. En International Journal of Microbiology (Vol. 2020). https://doi.org/10.1155/2020/4374891

​Organización Mundial de la Salud (Ed.). (2016). Plan de acción mundial sobre la resistencia a los antimicrobianos. https://www.who.int/es/publications/i/item/9789241509763

​P. Desbois, A. (2012). Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Patents on Anti-Infective Drug Discovery, 7(2). https://doi.org/10.2174/157489112801619728

​Peng, Q., Tang, X., Dong, W., Sun, N., & Yuan, W. (2023). A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. En Antibiotics (Vol. 12, Número 1). https://doi.org/10.3390/antibiotics12010012

​Prasad, S. R., Kumar, P., Mandal, S., Mohan, A., Chaurasia, R., Shrivastava, A., Nikhil, P., Aishwarya, D., Ramalingam, P., Gajbhiye, R., Singh, S., Dasgupta, A., Chourasia, M., Ravichandiran, V., Das, P., & Mandal, D. (2022). Mechanistic insight into the role of mevalonate kinase by a natural fatty acid-mediated killing of Leishmania donovani. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-20509-9

​Royce, L. A., Liu, P., Stebbins, M. J., Hanson, B. C., & Jarboe, L. R. (2013). The damaging effects of short chain fatty acids on Escherichia coli membranes. Applied Microbiology and Biotechnology, 97(18). https://doi.org/10.1007/s00253-013-5113-5

​Sánchez-Ceja, M., Teresa Arceo-Martínez, M., Guadalupe Sandoval-Flores, M., Alva-Murillo, P. N., Jiménez-Mejía, R., & Loeza-Lara, P. D. (2018). Use of nisin and chitosan for the inhibition of antibiotic resistant Staphylococcus aureus bovine mastitis-associated. Revista Mexicana De Ciencias Pecuarias, 9(4). https://doi.org/10.22319/rmcp.v9i4.4468

​Sharafi, T., Ghaemi, E. A., Rafiee, M., & Ardebili, A. (2024). Combination antimicrobial therapy: in vitro synergistic effect of anti-staphylococcal drug oxacillin with antimicrobial peptide nisin against Staphylococcus epidermidis clinical isolates and Staphylococcus aureus biofilms. Annals of Clinical Microbiology and Antimicrobials, 23(1). https://doi.org/10.1186/s12941-024-00667-6

​Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8). https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

​Tong, Z., Zhang, L., Ling, J., Jian, Y., Huang, L., & Deng, D. (2014). An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099513

​Touaitia, R., Mairi, A., Ibrahim, N. A., Basher, N. S., Idres, T., & Touati, A. (2025). Staphylococcus aureus: A review of the pathogenesis and virulence mechanisms. En Antibiotics (Vol. 14, Número 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antibiotics14050470

​Venkateswaran, P., Vasudevan, S., David, H., Shaktivel, A., Shanmugam, K., Neelakantan, P., & Solomon, A. P. (2023). Revisiting ESKAPE pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. En Frontiers in Cellular and Infection Microbiology (Vol. 13). https://doi.org/10.3389/fcimb.2023.1159798


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.