DESTILACIÓN: HISTORIA, INNOVACIONES Y ESTRATEGIAS PARA LA EFICIENCIA ENERGÉTICA EN LA INDUSTRIA MODERNA

Eduardo Sánchez-Ramírez, Brenda Huerta-Rosas, Juan José Quiroz–Ramírez, Juan Gabriel Segovia-Hernández

Resumen


Este documento presenta una revisión sobre la evolución histórica de la destilación, desde sus primeros usos en civilizaciones antiguas hasta su desarrollo durante la Revolución Científica y su consolidación como una herramienta clave en la industria moderna. La destilación ha sido fundamental en la refinación de petróleo, así como en la producción de bebidas alcohólicas y productos farmacéuticos. A lo largo de los años, la tecnología ha avanzado hacia una mayor eficiencia energética, con innovaciones como la integración térmica, las columnas de pared dividida y la destilación reactiva. A pesar de su alto consumo energético, sigue siendo indispensable en múltiples industrias. Este estudio identifica que las tecnologías de intensificación de procesos, como las columnas HIDiC, los sistemas híbridos con membranas y la destilación en microescala, permiten reducciones de hasta 50 % en el consumo energético. Se destaca además el uso emergente de inteligencia artificial, gemelos digitales y sensores inteligentes para optimizar la operación en tiempo real. Finalmente, se subraya el papel de la destilación en la economía circular mediante la recuperación de solventes y su integración con energías renovables, consolidándola como una plataforma tecnológica estratégica en la transición hacia procesos industriales sostenibles.

Texto completo:

PDF

Referencias


Al-Arfaj, M., & Luyben, W. L. (2002). Comparative control study of ideal and nonideal distillation columns. Industrial & Engineering Chemistry Research, 41(20), 4919–4930. https://doi.org/10.1021/ie0202068

Bhatia, S., Kumar, A., & Sharma, R. (2023). Hybrid membrane–distillation systems for efficient solvent recovery: A review. Separation and Purification Technology, 308, 123645. https://doi.org/10.1016/j.seppur.2022.123645

Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. (2011). Systematic methods of chemical process design. Prentice Hall PTR.

Bianchi, G., White, A. J., & Sayma, A. I. (2020). Advances in microdistillation for process intensification in separation technologies. Chemical Engineering Journal, 384, 123281. https://doi.org/10.1016/j.cej.2019.123281

Chen, L., Zhao, W., & Xu, J. (2021). Solvent recovery in pharmaceutical manufacturing: Circular economy perspectives. Journal of Cleaner Production, 295, 126389. https://doi.org/10.1016/j.jclepro.2021.126389

Dejanović, I., Matijašević, L., & Olujić, Ž. (2019). Dividing wall column – A breakthrough towards sustainable distilling. Chemical Engineering and Processing – Process Intensification, 140, 107619. https://doi.org/10.1016/j.cep.2019.107619

Forbes, R. J. (1948). A short history of the art of distillation: From the beginnings up to the death of Cellier Blumenthal. E. J. Brill.

Forbes, R. J. (1970). A history of science and technology. Penguin Books.

Gao, W., Zhang, J., & Wang, T. (2021). Application of artificial intelligence in the optimization of industrial distillation processes. AIChE Journal, 67(3), e17192. https://doi.org/10.1002/aic.17192

Górak, A., & Sorensen, E. (Eds.). (2014). Distillation: Fundamentals and principles. Academic Press.

Gorak, A., & Stankiewicz, A. (2011). Intensified reaction and separation systems. Annual Review of Chemical and Biomolecular Engineering, 2(1), 431–451. https://doi.org/10.1146/annurev-chembioeng-061010-114153

Hernández, S., Pereira‐Pech, S., Jiménez, A., & Rico‐Ramírez, V. (2003). Energy efficiency of an indirect thermally coupled distillation sequence. The Canadian Journal of Chemical Engineering, 81(5), 1087–1091. https://doi.org/10.1002/cjce.5450810524

Iwakabe, K., Nakanishi, H., Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Takamatsu, T., & Sorensen, E. (2006). Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC). Applied Thermal Engineering, 26(13), 1362–1368. https://doi.org/10.1016/j.applthermaleng.2005.11.005

Jiménez, A., Rico-Ramírez, V., & Hernández, S. (2018). Recent advances in distillation column design for energy savings. Chemical Engineering Transactions, 69, 25–30. https://doi.org/10.3303/CET1869005

Jiménez, A., Rico-Ramírez, V., & Hernández, S. (2021). Structured packings in intensified distillation: A review of recent developments. Separation and Purification Technology, 275, 119272. https://doi.org/10.1016/j.seppur.2021.119272

Karayannis, M. I., & Mihailides, A. (2006). From alchemy to chemistry: The transition that shaped modern science. Ambix, 53(3), 259–278. https://doi.org/10.1179/000269806X152832

Kiss, A. A. (2014). Distillation technology—Still young and full of breakthrough opportunities. Journal of Chemical Technology and Biotechnology, 89(4), 479–498. https://doi.org/10.1002/jctb.4361

Kiss, A. A., Landaeta, S. J. F., & Ferreira, C. A. I. (2012). Towards energy efficient distillation technologies – Making the right choice. Energy, 47(1), 531–542. https://doi.org/10.1016/j.energy.2012.09.038

Kiss, A. A., & Suszwalak, D. P. (2012). Enhanced dimethyl ether synthesis by reactive distillation in a dividing-wall column. Procedia Engineering, 42, 581–587. https://doi.org/10.1016/j.proeng.2012.07.447

Kister, H. Z. (1992). Distillation design. McGraw-Hill.

Kockmann, N. (2014). History of distillation. In A. Górak & E. Sorensen (Eds.), Distillation: Fundamentals and principles (pp. 1–43). Academic Press.

Lee, J., Park, Y., & Kim, H. (2021). Smart sensors and IoT integration for real-time monitoring of industrial distillation processes. Journal of Process Control, 103, 45–58. https://doi.org/10.1016/j.jprocont.2021.07.005

Levey, M. (1959). Chemical technology in the ancient Near East. Isis, 50(3), 312–325. https://doi.org/10.1086/348777

Li, Z., Wang, J., & Chen, B. (2021). Artificial intelligence-based multi-objective optimization of distillation systems for energy savings. Computers & Chemical Engineering, 147, 107254. https://doi.org/10.1016/j.compchemeng.2020.107254

Liu, Z., Zhang, H., & Li, W. (2020). Advances in cryogenic distillation for industrial gas separations. Industrial & Engineering Chemistry Research, 59(17), 7723–7735. https://doi.org/10.1021/acs.iecr.9b07345

Lutze, P., Babi, D. K., Woodley, J. M., & Gani, R. (2013). Phenomena-based methodology for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22), 7127–7144. https://doi.org/10.1021/ie400396b

Muñoz-Muñoz, C., García-Medina, B., & Rincón-Mejía, E. (2020). Solar distillation for water desalination: Recent advances and future prospects. Renewable and Sustainable Energy Reviews, 134, 110275. https://doi.org/10.1016/j.rser.2020.110275

Needham, J. (1980). Science and civilization in China: Vol. 5. Chemistry and chemical technology. Part IV: Spagyrical discovery and invention: Apparatus, theories and gifts. Cambridge University Press.

Newman, W. R. (2006). Atoms and alchemy: Chymistry and the experimental origins of the scientific revolution. University of Chicago Press.

Patel, P., Singh, R., & Mohan, D. (2022). Advances in solvent recovery technologies for sustainable chemical industries. Chemical Engineering Journal, 446, 137105. https://doi.org/10.1016/j.cej.2022.137105

Pérez-Cisneros, E. S., Sales-Cruz, M., Lobo-Oehmichen, R., & Viveros-García, T. (2017). A reactive distillation process for co-hydrotreating of non-edible vegetable oils and petro-diesel blends to produce green diesel fuel. Computers & Chemical Engineering, 105, 105–122. https://doi.org/10.1016/j.compchemeng.2017.05.020

Principe, L. M. (2011). The secrets of alchemy. University of Chicago Press.

Rangaiah, G. P. (2016). Optimization in chemical engineering. Wiley.

Reay, D., Ramshaw, C., & Harvey, A. (2013). Process intensification: Engineering for efficiency, sustainability and flexibility. Butterworth-Heinemann.

Seader, J. D., & Henley, E. J. (2006). Separation process principles (2nd ed.). John Wiley & Sons.

Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435–437. https://doi.org/10.1038/532435a

Skiborowski, M., Repke, J. U., & Górak, A. (2023). Process intensification and energy transition: Advances in distillation technologies. Chemical Engineering Research and Design, 191, 350–368. https://doi.org/10.1016/j.cherd.2023.02.015

Smith, R. (2010). Chemical process design and integration. Wiley.

Stankiewicz, A., & Moulijn, J. A. (2000). Process intensification: Transforming chemical engineering. Chemical Engineering Progress, 96(1), 22–34.

Sun, L., Zhang, X., & Yang, C. (2020). Deep learning models for prediction and optimization of distillation column performance. Chemical Engineering Science, 223, 115768. https://doi.org/10.1016/j.ces.2020.115768

Sun, Z., Li, Y., & Chen, G. (2022). Digital twins for energy-efficient control and fault prediction in distillation columns. Computers & Chemical Engineering, 163, 107837. https://doi.org/10.1016/j.compchemeng.2022.107837

Tahir, M., Hussain, M., & Lee, M. (2024). Energy-efficient distillation technologies in the context of sustainable chemical processes: A comprehensive review. Journal of Cleaner Production, 430, 139564. https://doi.org/10.1016/j.jclepro.2023.139564Ullmann, M. (2004). Islamic alchemy: An introduction to the science of the sages. Brill.

Zhang, Y., Chen, X., & Wang, L. (2022). Hybrid membrane–distillation processes for sustainable bioseparations. Journal of Membrane Science, 658, 120717. https://doi.org/10.1016/j.memsci.2022.120717

Zhao, D., Xie, H., & Zhang, X. (2022). Metal–organic frameworks for energy-efficient distillation: Advances and perspectives. Chemical Society Reviews, 51(3), 951–983. https://doi.org/10.1039/D1CS00825A

Zhou, H., Liu, Y., & Zhang, J. (2022). Machine learning-based predictive control for distillation columns under dynamic conditions. Industrial & Engineering Chemistry Research, 61(12), 4378–4389.


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.