DESTILACIÓN: HISTORIA, INNOVACIONES Y ESTRATEGIAS PARA LA EFICIENCIA ENERGÉTICA EN LA INDUSTRIA MODERNA
Resumen
Texto completo:
PDFReferencias
Al-Arfaj, M., & Luyben, W. L. (2002). Comparative control study of ideal and nonideal distillation columns. Industrial & Engineering Chemistry Research, 41(20), 4919–4930. https://doi.org/10.1021/ie0202068
Bhatia, S., Kumar, A., & Sharma, R. (2023). Hybrid membrane–distillation systems for efficient solvent recovery: A review. Separation and Purification Technology, 308, 123645. https://doi.org/10.1016/j.seppur.2022.123645
Biegler, L. T., Grossmann, I. E., & Westerberg, A. W. (2011). Systematic methods of chemical process design. Prentice Hall PTR.
Bianchi, G., White, A. J., & Sayma, A. I. (2020). Advances in microdistillation for process intensification in separation technologies. Chemical Engineering Journal, 384, 123281. https://doi.org/10.1016/j.cej.2019.123281
Chen, L., Zhao, W., & Xu, J. (2021). Solvent recovery in pharmaceutical manufacturing: Circular economy perspectives. Journal of Cleaner Production, 295, 126389. https://doi.org/10.1016/j.jclepro.2021.126389
Dejanović, I., Matijašević, L., & Olujić, Ž. (2019). Dividing wall column – A breakthrough towards sustainable distilling. Chemical Engineering and Processing – Process Intensification, 140, 107619. https://doi.org/10.1016/j.cep.2019.107619
Forbes, R. J. (1948). A short history of the art of distillation: From the beginnings up to the death of Cellier Blumenthal. E. J. Brill.
Forbes, R. J. (1970). A history of science and technology. Penguin Books.
Gao, W., Zhang, J., & Wang, T. (2021). Application of artificial intelligence in the optimization of industrial distillation processes. AIChE Journal, 67(3), e17192. https://doi.org/10.1002/aic.17192
Górak, A., & Sorensen, E. (Eds.). (2014). Distillation: Fundamentals and principles. Academic Press.
Gorak, A., & Stankiewicz, A. (2011). Intensified reaction and separation systems. Annual Review of Chemical and Biomolecular Engineering, 2(1), 431–451. https://doi.org/10.1146/annurev-chembioeng-061010-114153
Hernández, S., Pereira‐Pech, S., Jiménez, A., & Rico‐Ramírez, V. (2003). Energy efficiency of an indirect thermally coupled distillation sequence. The Canadian Journal of Chemical Engineering, 81(5), 1087–1091. https://doi.org/10.1002/cjce.5450810524
Iwakabe, K., Nakanishi, H., Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Takamatsu, T., & Sorensen, E. (2006). Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC). Applied Thermal Engineering, 26(13), 1362–1368. https://doi.org/10.1016/j.applthermaleng.2005.11.005
Jiménez, A., Rico-Ramírez, V., & Hernández, S. (2018). Recent advances in distillation column design for energy savings. Chemical Engineering Transactions, 69, 25–30. https://doi.org/10.3303/CET1869005
Jiménez, A., Rico-Ramírez, V., & Hernández, S. (2021). Structured packings in intensified distillation: A review of recent developments. Separation and Purification Technology, 275, 119272. https://doi.org/10.1016/j.seppur.2021.119272
Karayannis, M. I., & Mihailides, A. (2006). From alchemy to chemistry: The transition that shaped modern science. Ambix, 53(3), 259–278. https://doi.org/10.1179/000269806X152832
Kiss, A. A. (2014). Distillation technology—Still young and full of breakthrough opportunities. Journal of Chemical Technology and Biotechnology, 89(4), 479–498. https://doi.org/10.1002/jctb.4361
Kiss, A. A., Landaeta, S. J. F., & Ferreira, C. A. I. (2012). Towards energy efficient distillation technologies – Making the right choice. Energy, 47(1), 531–542. https://doi.org/10.1016/j.energy.2012.09.038
Kiss, A. A., & Suszwalak, D. P. (2012). Enhanced dimethyl ether synthesis by reactive distillation in a dividing-wall column. Procedia Engineering, 42, 581–587. https://doi.org/10.1016/j.proeng.2012.07.447
Kister, H. Z. (1992). Distillation design. McGraw-Hill.
Kockmann, N. (2014). History of distillation. In A. Górak & E. Sorensen (Eds.), Distillation: Fundamentals and principles (pp. 1–43). Academic Press.
Lee, J., Park, Y., & Kim, H. (2021). Smart sensors and IoT integration for real-time monitoring of industrial distillation processes. Journal of Process Control, 103, 45–58. https://doi.org/10.1016/j.jprocont.2021.07.005
Levey, M. (1959). Chemical technology in the ancient Near East. Isis, 50(3), 312–325. https://doi.org/10.1086/348777
Li, Z., Wang, J., & Chen, B. (2021). Artificial intelligence-based multi-objective optimization of distillation systems for energy savings. Computers & Chemical Engineering, 147, 107254. https://doi.org/10.1016/j.compchemeng.2020.107254
Liu, Z., Zhang, H., & Li, W. (2020). Advances in cryogenic distillation for industrial gas separations. Industrial & Engineering Chemistry Research, 59(17), 7723–7735. https://doi.org/10.1021/acs.iecr.9b07345
Lutze, P., Babi, D. K., Woodley, J. M., & Gani, R. (2013). Phenomena-based methodology for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22), 7127–7144. https://doi.org/10.1021/ie400396b
Muñoz-Muñoz, C., García-Medina, B., & Rincón-Mejía, E. (2020). Solar distillation for water desalination: Recent advances and future prospects. Renewable and Sustainable Energy Reviews, 134, 110275. https://doi.org/10.1016/j.rser.2020.110275
Needham, J. (1980). Science and civilization in China: Vol. 5. Chemistry and chemical technology. Part IV: Spagyrical discovery and invention: Apparatus, theories and gifts. Cambridge University Press.
Newman, W. R. (2006). Atoms and alchemy: Chymistry and the experimental origins of the scientific revolution. University of Chicago Press.
Patel, P., Singh, R., & Mohan, D. (2022). Advances in solvent recovery technologies for sustainable chemical industries. Chemical Engineering Journal, 446, 137105. https://doi.org/10.1016/j.cej.2022.137105
Pérez-Cisneros, E. S., Sales-Cruz, M., Lobo-Oehmichen, R., & Viveros-García, T. (2017). A reactive distillation process for co-hydrotreating of non-edible vegetable oils and petro-diesel blends to produce green diesel fuel. Computers & Chemical Engineering, 105, 105–122. https://doi.org/10.1016/j.compchemeng.2017.05.020
Principe, L. M. (2011). The secrets of alchemy. University of Chicago Press.
Rangaiah, G. P. (2016). Optimization in chemical engineering. Wiley.
Reay, D., Ramshaw, C., & Harvey, A. (2013). Process intensification: Engineering for efficiency, sustainability and flexibility. Butterworth-Heinemann.
Seader, J. D., & Henley, E. J. (2006). Separation process principles (2nd ed.). John Wiley & Sons.
Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435–437. https://doi.org/10.1038/532435a
Skiborowski, M., Repke, J. U., & Górak, A. (2023). Process intensification and energy transition: Advances in distillation technologies. Chemical Engineering Research and Design, 191, 350–368. https://doi.org/10.1016/j.cherd.2023.02.015
Smith, R. (2010). Chemical process design and integration. Wiley.
Stankiewicz, A., & Moulijn, J. A. (2000). Process intensification: Transforming chemical engineering. Chemical Engineering Progress, 96(1), 22–34.
Sun, L., Zhang, X., & Yang, C. (2020). Deep learning models for prediction and optimization of distillation column performance. Chemical Engineering Science, 223, 115768. https://doi.org/10.1016/j.ces.2020.115768
Sun, Z., Li, Y., & Chen, G. (2022). Digital twins for energy-efficient control and fault prediction in distillation columns. Computers & Chemical Engineering, 163, 107837. https://doi.org/10.1016/j.compchemeng.2022.107837
Tahir, M., Hussain, M., & Lee, M. (2024). Energy-efficient distillation technologies in the context of sustainable chemical processes: A comprehensive review. Journal of Cleaner Production, 430, 139564. https://doi.org/10.1016/j.jclepro.2023.139564Ullmann, M. (2004). Islamic alchemy: An introduction to the science of the sages. Brill.
Zhang, Y., Chen, X., & Wang, L. (2022). Hybrid membrane–distillation processes for sustainable bioseparations. Journal of Membrane Science, 658, 120717. https://doi.org/10.1016/j.memsci.2022.120717
Zhao, D., Xie, H., & Zhang, X. (2022). Metal–organic frameworks for energy-efficient distillation: Advances and perspectives. Chemical Society Reviews, 51(3), 951–983. https://doi.org/10.1039/D1CS00825A
Zhou, H., Liu, Y., & Zhang, J. (2022). Machine learning-based predictive control for distillation columns under dynamic conditions. Industrial & Engineering Chemistry Research, 61(12), 4378–4389.
Enlaces refback
- No hay ningún enlace refback.
Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.
.
Naturaleza y Tecnología